The curve above is obtained for the reaction of an excess of $CaCO_3$ with hydrochloric acid. How and why does the rate of reaction change with time?

Rate of reaction	Keason		
A. decreases	the HCl becomes more dilute		
B. decreases	the pieces of CaCO		

17. The manufacture of sulfur trioxide can be represented by the equation below.

$$2SO_2(g) + O_2(g) \approx 2SO_3(g)$$
 $H^o = -197 \text{ kJ mol}^{-1}$.

What happens when a catalyst is added to an equilibrium mixture from this reaction?

- A. The yield of sulfur trioxide increases.
- B. The rate of the forward reaction increases and that of the reverse reaction decreases.
- C. The rates of both forward and reverse reactions increase.
- D. The value of H^o increases.
- E. The value of H^o decreases.
- 18. Hydrogen and carbon dioxide react as shown in the equation below.

$$H_2(g) + CO_2(g) \cong H_2O(g) + CO(g)$$

For this reaction the values of K_c with different temperatures are

21.	Use the bond enthalpies provided to determine which of the answers below gives the
	enthalpy of the reaction in kJ mol ⁻¹

 $H_2N-N=N-NH_2(g$

 $_{2}$ N-NH $_{2}$ (g

g)

B. -317 C. +317 D. +475

E. 633

22. For the reaction

$$2H_2(g) + O_2(g)$$
 $2H_2O(g)$ the bond enthalpies (in kJ mol $^{-1}$) are

	0.025 mol L	-1 HCl?					
A	. 1.12	B. 1.65	C. 1.75	D. 1.82	E. 2.00		
27.				hy blood at pH	7.35-7.45. What i I 7.35 and 37 °C? $pK_w = 13.63$	s the	
	A. 3.55 x 1		B. 4.47 x 1				
28.			he mass of Na		an unknown mas	s of NaOH, the	
	A. (0.2 g B. 0	.5 g C. 1	.0 g. D.	1.2 g. E. 1.5	5 g	
A E C M E 30.	the following HS - After HCl is a the amount of the amount of the A. HS is also a B. HS is a weak. H ₂ S is not we have the hard hard hard hard hard hard hard hard	ng equation: + H ₃ O ⁺ = added then a back. KHS recovered an acid as base wery water solution a solid at the dentify a whiten water was according to the solution.	H ₂ S + H ₂ O ase (KOH) can ed is always low ble and some low bottom of the first solid the follows:	be added to rever than origing the eaves the flask (Cl) TJET (Q.) (ask.)		when this is done is because: d is added. 10(a)4(y G[(W)id0.00m	8

When the pH of a solution changes from 2.0 to 4.0, the hydronium ion (H₃O⁺) concentration

What is the pH of a solution made by mixing 10.0 mL of 0.015 mol L⁻¹ HCl and 25.0 mL of

B. increases by a factor of 2

D. decreases by a factor of 100

A. increases by a factor of 100

C. decreases by a factor of 2

E. decreases by one half

26.

31. Thiocyanate ions (SCN⁻) react with iron(III) ions in solution to form a complex ion which is a blood-red colour.

$$Fe^{3+}(aq) + SCN(aq) = [Fe(SCN)]^{2+}(aq)$$

In an experiment to find the equilibrium constant, Kc, for this reaction 45.00 mL of a solution containing 0.200 mol L⁻¹

37.	A mining company carried out an analysis of an ore sample to find out how much copper